Local seismic systems for study of the effect of seismic waves on rock mass and ground support in Swedish underground mines (Zinkgruvan, Garpenberg, Kiruna)
نویسنده
چکیده
Three local seismic systems were installed by August 2015 in deep underground mines in Sweden – Zinkgruvan Mine (Lundin Mining AB), Garpenberg Mine (Boliden AB), and Kiirunavaara Mine (LKAB) as part of a project for developing new methods for Evaluating the Rock Support Performance (ERSP, Vinnova). The areas were chosen within the most probable volumes where large rockbursts can be expected. The local systems were installed at mine levels between 730 and 1150 m in different mines. The horizontal extend of each instrumented areas is between 70 and 100 m. The seismic system in each mine is a combination of uniaxial and three-axial 4.5 Hz geophones installed on the surface, in shallow (~0.5 m) and deeper (6-9 m) boreholes in profiles across drifts. These profiles are in close proximity to profiles with extensometers, instrumented bolts, and observation holes. The seismic systems are manufactured and installed by the Institute of Mine Seismology (IMS). The aim of the seismic systems is to record the seismic events that occur in the vicinity of the instrumented areas and provide valuable data about the variability of seismic waveforms around the underground openings and changes when seismic waves approach them. Data is used to study: 1) the attenuation/decrease of the maximum ground velocity (PPV) with the distance, especially at small distances; 2) site effects, including maximum amplitudes, predominant frequency, and duration of the seismic signals, 3) the attenuation/amplification of the seismic waves approaching the underground opening. The final aim is to obtain new information that can be used for improved requirements for the rock support design in rockburst prone areas. The installation of the seismic systems started in May 2015 (Zinkgruvan Mine) and was completed by August 2015. They run mostly in triggered mode with initial automatic arrival time picking and source parameter calculation and subsequent manual processing of seismic event of interest. More than 200,000 seismic events with magnitude from -4.5 to 2.0 were recorded by December 2015. At present only a small portion of all data was processed manually and the procedures for processing of the events were developed on this subset. The first results from the monitoring showed that there are differences in the amplitudes and shape of the seismic signals recorded by the sensors installed in deeper borehole (behind the most blastdamaged zone (6 – 9 m)) and close to the surface (0.5 m) or on the surface of the openings. There are also differences between the waveforms recorded on the walls and the roof along the same profiles or on nearby profiles. Data from the investigated rockbursts showed maximum velocity recorded from a seismic events at close distances with magnitude larger than 0.5 in the order of 10 cm/s with clipping levels 10 – 20 cm/s.
منابع مشابه
Jointed Rock Mass Effects on the Seismic Waves Scattering from the Canyon Sites in the Dam's Support
Seismic study of canyon sites has always been one of the important fields of seismic studies because of massive structures such as dams that are built in such sites. Jointed rock mass in rock canyon sites is one of the main site effects that can change the seismic waves. In this research, we studied the influence of this factor on the scattering of seismic waves. To fulfil this goal, we employe...
متن کاملThe performance of bolt-reinforced and shotcreted in-stope pillar in a rockburst prone areas
Historically, the design of the in-stope pillar in underground excavations has been based on empirical formulae and numerical modelling. Although these design methods have been extensively applied in several gold mines in South Africa, rockburst, in-stope pillar burst/failure are continuously reported as the major problem faced by mines. Therefore, this study attempts to compare the performance...
متن کاملA Numerical Evaluation of Seismic Response of Shallow Soil Deposits
This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear (EL) frequency-domain analysis using DEEPSOIL software and nonlinear (NL) time-domain analysis using OPENSEES software. The ana...
متن کاملStudying Peak Particle Velocity Due to Blast in Development Tunnels’ Face in Coal Stoping
The impact of blast-driven shocks on the safety and stability of the underground coal mines has been well established. The seismic imperfections resulting from blasting depend on the total explosive energy released during blasting and the closeness of the development tunnel face to the stope face. Also, the quality of the rock mass wherein the whole stope face is located might pose considerable...
متن کاملA Comparison of Underground Opening Support Design Methods in Jointed Rock Mass (TECHNICAL NOTE)
It is of great importance to consider long-term stability of rock mass around the openings of underground structure, during design, construction and operation of the said structures in rock. In this context, three methods namely, empirical, analytical and numerical have been applied to design and analyze the stability of underground infrastructure at the Siah Bisheh Pumping Storage Hydro-Electr...
متن کامل